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Abstract

For all but the most simple geometric models it is difficult to find a mapping from a two-dimensional
texture space to the surface of a model that does not distort the texture. This paper introduces a method

M of texture synthesis where such a mapping is not necessary because the texture is generated directly on
L the surface of the model. No assignment of texture coordinates to polygon vertices is needed. We

N describe how to generate a mesh of points on a polyhedral model using a relaxation process and how
this mesh is used to generate textures. There is no distortion from such a texture because the geometry
of the texture matches the geometry of the model. These textures can be rendered free of artifacts
resulting from the discrete nature of the underlying mesh or due to aliasing of the texture features.
Such textures can also be used as bump maps. We demonstrate how a pattern formation mechanism
zalled reaction-diffusion can be simulated on a such mesh to create a variety of patterns found in
nature. Reaction-diffusion is an addition to the growing collection of procedural methods found in the
texture synthesist's toolbox. Biologists have shown how the chemical mechanism of reaction-
diffusion can be used to form simple spotted and striped patterns. We show how the range of these
patterns can be extended by having one chemical system lay down an initial pattern and then allowing
one or more later systems to refine the pattern. In this way, texture features can be generated such as
the clusters of spots on a leopard known as rosettes and the web-like patterns found on giraffes.

- ,, I Introduction

Texture mapping was first introduced by [Catmull 74] as a method of adding to the visual richness of a
A computer generated image without adding geometry. There are three fundamental issues that must be
i addressed to render textures. First, a texture must be acquired. Possibilities include creating a texture

. procedurally, painting a texture, or digitally scanning a texture from a photograph. Next, we need to
I i define a mapping from the texture space to the space of the model to be textured. Defining this

mapping should not require a great deal of a user's time. This mapping should not noticeably distort
the texture. Finally, we require a method of sampling the texture during rendering so that the final
image contains no artifacts due to aliasing or resulting from the underlying texture representation
[Heckbert 89]. These three issues are often interrelated, and this is true of the techniques in this paper.

This paper explores a procedural method for texture synthesis and also introduces a new method for
fitting a texture to a surface. Either of these techniques can be used separately, but the examples given
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here shows the strength of using them together to produce natural textures on complex models. After a

discussion of previous texturing methods, the majority of the paper is divided into two parts, one for
each of these topics.

The first part of this paper describes a chemical mechanism for pattern formation know as reaction-
diffusion. This mechanism, first described in [Turing 52], shows how two or more chemicals that

diffuse across a surface and react with one another can form stable patterns. A number of researchers
have shown how simple patterns of spots and stripes can be created by reaction-diffusion systems
[Bard 81; Murray 81; Meinhardt 82]. We begin by introducing the basics of how a reaction-diffusion
system can form simple patterns. We then introduce new results that show how more complex
patterns can be generated by having an initial pattern set down by one chemical system and further
refined by later chemical systems. This widens the range of patterns that can be generated by reaction-

diffusion to include such patterns as the rosettes found on leopards and the multiple-width stripes
found on some fish and snakes. These patterns could be generated on a square grid and then mapped
onto an ouject's surface using traditional techniques, but there are advantages .to synthesizing the
pattern directly on the surface to be textured in a manner that will be described next.

The second part of this paper presents a method of generating a mesh over the surface of a polyhedral
model that can be used for texture synthesis. The approach uses relaxation to evenly distribute points

across the model's surface and then divides the surface into cells centered at these points. We can
simulate reaction-diffusion systems directly on this mesh to create textures. Because there is no
mapping from texture space to the object, there is no need to assign texture coordinates to polygons
and there is no distortion of the textures. At no time is the texture stored in some regular m x n grid,
as are most textures. It is likely that other texture generation methods in addition to reaction-diffusion
could also make use of such a mesh. Images of surfaces that have been textured using a mesh do not

show aliasing artifacts or visual indication of the underlying mesh structure. These textures can also
be used for bump mapping, a technique introduced in [Blinn 78] to give the appearance of a rough or
wrinkled surface. The three steps involved in texturing a model in the manner shown in Figures 7
through 10 are: (1) generate a mesh that fits the polyhedral model, (2) simulate a reaction-diffusion
system on the mesh (solve a PDE) and (3) use the final values from the simulation to specify surface
color while rendering the polygons of the model.

Artificial Texture Synthesis

A great strength of procedurally generating textures is that each new method can be used in conjunction
with already existing functions. Several methods have been demonstrated that use composition of
various functions to generate textures. Gardner introduced the idea of summing a small number of
sine waves of different periods, phases and amplitudes to create a texture [Gardner 85]. Pure sine
waves generate fairly bland textures, so Gardner uses the values of the low period waves to alter the
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shape of the higher period waves. This method gives textures that are evocative of patterns found in
nature such as those of clouds and trees. Perlin uses band-limited noise as the basic function from
which to construct textures [Perlin 85]. He has shown that a wide variety of textures (stucco,
wrinkles, marble, fire) can be created by manipulating such a noise function in various ways. [Lewis

89] describes several methods for generating anisotropic noise functions to be used for texture
synthesis. A stunning example of using physical simulation for texture creation is the dynamic cloud
patterns of Jupiter in the movie 2010 [Yaeger and Upson 86].

A texture can be created by painting an image, and the kinds of textures that may be created this way
are limitless. An unusual variant of this is to paint an "image" in the frequency domain and then take
the inverse transform to create the final texture [Lewis 84]. Lewis demonstrates how textures such as
canvas and wood grain can be created by this method. An extension to digital painting, described in
[Hanrahan and Haeberli 90], shows how use of a hardware z-buffer can allow a user to paint
interactively onto the image of a three-dimensional surface.

Mapping Textures onto Surfaces

Once a texture has been created, a method is needed to map it onto the surface to be textured. This is
commonly cast into the problem of assigning texture coordinates (u,v) from a rectangle to the vertices
of the polygons in a model. Mapping texture coordinates onto a complex surface is not easy, and
several methods have been proposed to accomplish this. A common approach is to define a mapping
from the rectangle to the natural coordinate system of the target object's surface. For example, latitude
and longitude can be used to define a mapping onto a sphere, and parametric coordinates can be used
when mapping a texture onto a cubic patch [Catmull 74]. In some cases an object might be covered by
multiple patches, and in these instances care must be taken to make the edges of the patches match. A
successful example of this is found in the bark texture for a model of a maple tree in [Bloomenthal 85].

Another approach to texture mapping is to project the texture onto the surface of the object. One

example of this is to orient the texture square in R3 (Euclidean three-space) and perform a projection
from this square onto the surface [Peachey 85]. Related to this is a two-step texture mapping method
given by [Bier and Sloan 86]. The first step maps the texture onto a simple intermediate surface in R3,

such as a box or cylinder. The second step projects the texture from this surface onto the target object.
A different method of texture mapping is to make use of the polygonal nature of many graphical
models. In this approach, taken by [Samek 86], the surface of a polyhedral object is unfolded onto the
plane one or more times and the average of the unfolded positions of each vertex is used to determine LI
texture placement. A user can adjust the mapping by specifying where to begin the unfolding of the
polyhedral object.

Each of the above methods has been used with success for some models and textures. There are
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pitfalls to these methods, however. Each of the methods can cause a texture to be distorted because
there is often no natural map from the texture space to the surface of the object. This is a fundamental
problem that comes from defining the texture pattern over a geometry that is different than that of the
object to be textured. Some of these techniques also require a good deal of user intervention. One
solution to these problems for some images is the use of solid textures. A solid texture is a color

function defined over a portion of R3, and such a texture is easily mapped onto the surfaces of objects
[Peachey 85; Perlin 85]. A point (x,y,z) on the surface of an object is colored by the value of the
solid texture function at this point in space. This method is well suited for simulating objects that are
formed from a solid piece of material such as a block of wood or a slab of marble. Solid texturing is a
successful technique because the texture function matches the geometry of the material being

simulated, namely the geometry of R3. No assignment of (u,v) texture coordinates is necessary.

Part One: Reaction-Diffusion

This section describes a class of patterns that are formed by reaction-diffusion systems. These patterns
are an addition to the texture synthesist's toolbox, a collection of tools that include such procedural
methods as Perlin's noise function and Gardner's sum-of-sine waves. The reaction-diffusion patterns
can either be used alone or they can be used as an initial pattern that can be built on using other
procedures. This section begins by discussing reaction-diffusion as it relates to developmental biology
and then gives specific examples of patterns that can be generated using reaction-diffusion.

A central issue in developmental biology is how the cells of an embryo arrange themselves into
particular patterns. For example, how is it that the cells in the embryo of a worm become organized
into segments? Undoubtedly there are many organizing mechanisms working together throughout the
development of an animal. One possible mechanism, first described by Turing, is that two or more
chemicals can diffuse through an embryo and react with each other until a stable pattern of chemical
concentrations is reached [Turing 52]. These chemical pre-patterns can then act as a trigger for cells of
different types to develop in different positions in the embryo. Such chemical systems are known as
reaction-diffusion systems, and the hypothetical chemical agents are called morphogens. Since the
introduction of these ideas, several such systems have been studied to see what patterns can be formed
and to see how these matched actual animal patterns such as coat spotting and stripes on mammals
[Bard 81; Murray 81]. So far no direct evidence has been found to show that reaction-diffusion is the
operating mechanism in the development of any particular embryo pattern. This should not be taken as
a refutation of the model, however, because the field of developmental biology is still young and very
few mechanisms have been verified to be the agents of pattern formation in embryo development.

The basic form of a simple reaction-diffusion system is to have two chemicals (call them a and b) that
diffuse through the embryo at different rates and that react with each other to either build up or break
down a and b. These systems can be explored in any dimension. For example, we might use a one-
dimensional system to look at segment formation in worms, or we could look at reaction-diffusion on

-4-



a surface for spot-pattern formation. Here are the equations showing the general form of a two-
chemical reaction-diffusion system:

a = F(a,b) + D V2a
at a

Db 2_ = G(a,b) + Db V b
at

The first equation says that the change of the concentration of a at a given time depends on the sum of
a function F of the local concentrations of a and b and the diffusion of a from places nearby. The

constant Da says how fast a is diffusing, and the Laplacian V2 a is a measure of how high the
concentration of a is at one location with respect to the concentration of a nearby. If nearby places

have a higher concentration of a, then V2 a will be positive and a diffuses toward this position. If

nearby places have lower concentrations, then V2 a will be negative and a will diffuse away from this
position.

The key to pattern formation based on reaction-diffusion is that an initial small amount of variation in
the chemical concentrations can cause the system to be unstable initially and to be driven to a stable
state in which the concentrations of a and b vary across the surface. A set of equations that Turing
proposed for generating patterns in one dimension provides a specific example of reaction-diffusion:

Aa i = s (16 - ai bi) + Da (ai+1 + ai.1 - 2ai)

Ab i = s (ai bi - -fli) + Db (bi+l + bi- " 2bi)

These equations are given for a discrete model, where each ai is one "cell" in a line of cells and where

the neighbors of this cell are a.1* and ai+1. The values for fli are the sources of slight irregularities in

chemical concentration across the line of cells. Figure 1 illustrates the progress of the chemical
concentration of b across a line of 60 cells as its concentration varies over time. Initially the values of

ai and bi were set to 4 for all cells along the line. The values of fAi were clustered around 12, with
the values varying randomly by ± 0.05. The diffusion constants were set to Da = .25 and Db =
.0625, which means that a diffuses more rapidly than b, and s = 0.03125. Notice how after about
2000 iterations the concentration of b has settled down into a pattern of peaks and valleys. The

simulation results look different in detail to this when a different random seed is used for fli, but such

simulations have the same characteristic peaks and valleys with roughly the same scale to these
features.

-5



Reaction-Diffusion on a Grid

The reaction-diffusion system given above can also be simulated on a two-dimensional field of cells.
The most common form for such a simulation is to have each cell be a square in a regular grid, and
have a cell diffuse to each of its four neighbors on the grid. The discrete form of the equations is:

Aaij = s (16 - ai j bij) + Da (ai+Ij + ai.l.j + aij+l + aij.1 - 4ai)
Abij = s (aij bij - bij - flij) + Db (bi+lj + bi-lj + bij+l + bij. I - 4bij)

In this form, the value of V2 a at a cell is found by summing each of the four neighboring values of a
and subtracting four times the value of a at the cell. Each of the neighboring values for a are given
the same weight in this computation because the length of the shared edge between any two cells is
always the same on a square grid. This will not be the case when we perform a similar computation on

a less regular grid, where different neighbors will be weighted differently when calculating V2a.

Figure 3a shows the result of a simulation of these equations on a 64 x 64 grid of cells. Notice that the
valleys of concentration in b take the form of spots in two dimensions. It is the nature of this system

to have high concentrations for a in these spot regions where b is low. Sometimes chemical a is
called an inhibitor because high values for a in a spot region prevent other spots from forming
nearby. In two-chemical reaction-diffusion systems the inhibitor is always the chemical that diffuses
more rapidly.

We can create spots of different sizes by changing the value of the constant s for this system. Small
values for s (s = 0.05 in Figure 3a) cause the reaction part of the system to proceed more slowly

relative to the diffusion and this creates larger spots. Larger values for s produce smaller spots (s =

0.2 in Figure 3b). The spot patterns of Figures 3a and 3b were generated with flij = 12 ± 0.1. If the

random variation of Oij is increased to 12 ± 3, the spots become more irregular in shape (Figure 3e).

The patterns that can be generated by this reaction-diffusion system were extensively studied in [Bard
and Lauder 74] and [Bard 81].

Reaction-diffusion need not be restricted to two-chemical systems. For the generation of striped
patterns, Meinhardt has proposed a system involving five chemicals that react with one another
[Meinhardt 82, p. 125]. Two of the chemicals indicate the presence of one or the other stripe color
(white or black, for instance), a third chemical makes sure only one or the other of the first two

chemicals is present in any one location, and the last two chemicals determine the widths of the stripes.
The details of the equations and an example program are given in Meinhardt's book. The result of
simulating such a system on a two-dimensional grid can be seen in Figure 6a. Notice that the system
generates random stripes that tend to fork and sometimes form islands of one color or the other. This
pattern is like random stripes found on some tropical fish and is also similar to the pattern of right eye
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and left eye regions of the ocular dominance columns found in mammals [Hubel and Wiesel 791.

Complex Patterns

This section shows how we can generate more complex patterns using reaction-diffusion by allowing
one chemical system to set down an initial pattern and then having this pattern refined by simulating a
second system. One model of embryogenesis of the fruit fly shows how several reaction-diffusion
systems might lay down increasingly refined stripes to give a final pattern that matches the
segmentation pattern in the embryo [Hunding 90]. Bard has suggested that such a cascade process
might be responsible for some of the less regular coat patterns of some mammals [Bard 8111, but he
gives no details about how two chemical systems might interact. The patterns shown in this section

are new results that are inspired by Bard's idea of cascade processes.

Figures 3a and 3b show how we can change the spot size of a pattern by changing the size parameter
s of Turing's reaction-diffusion system from 0.05 to 0.2. Figure 3c demonstrates that these two

systems can be combined to create the large-and-small spot pattern found on cheetahs. We can make
this pattern by running the large spot simulation, "freezing" part of this pattern, and then running the
small spot simulation in the unfrozen portion of the computation mesh. Specifically, once the large
spots are made (using s = 0.05) we set a boolean flag frozen to TRUE for each cell that has a
concentration for chemical b between 0 and 4. These marked cells are precisely those that form the
dark spots of Figure 3a. Then we run the spot forming mechanism again using s = 0.2 to form the
smaller spots. During this second phase all of the cells marked as frozen retain their old values for the
concentrations of a and b. These marked cells must still participate in the calculation of the values of
the Laplacian for a and b for neighboring cells. This allows the inhibitory nature of chemical a to
prevent the smaller spots from forming too near the larger spots. This final image is more natural than
the image we would get if we simply superimposed the images of Figures 3a and 3b.

We can create the leopard spot pattern of Figure 3d in much the same way as we created the cheetah
spots. We lay down the overall plan for this pattern by creating the large spots as in Figure 3a (s =
0.05). Now, in addition to marking as frozen those cells that form the large spots, we also change the
values of chemicals a and b to be 4 at these marked cells. When we run the second system to form

smaller spots (s = 0.2) the small spots tend to form in the areas adjacent to the large spots. The
smaller spots can form near the large spots because the inhibitor a is not high at the marked cells.
This texture can also be seen on the horse model in Figure 9.

In a manner analogous to the large-and-small spots of Figure 3c we can create a pattern with small
stripes running between larger stripes. The stripe pattern of Figure 6b is such a pattern and is

modelled after the stripes found on fish such as the lionfish. We can make the large stripes that set the
overall structure of the pattern by running Meinhardt's stripe-formation system with values of Dg =
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0.1 and Ds = 0.06. These constants govern the diffusion speed of four of the five chemicals. Then
we mark those cells in the white stripe regions as frozen and run a second stripe-forming system with
Dg = 0.008 and Ds = 0.06. The slower diffusion of chemicals g, and g2 (a smaller value for Dg)
causes thinner stripes to form between the larger stripes.

We can use both the spot and stripe formation systems together to form the web-like pattern called
reticulation that is found on giraffes. Figure 3f shows the result of first creating slightly irregular
spots as in Figure 3e and then using the stripe-formation system to make stripes between the spots.

Once again we mark as frozen those cells that comprise the spots. We also set the concentrations of
the five chemicals at the frozen cells to the values found in the white regions of the patterns made by
the stripe-formation system. This causes black stripes to form between the marked cells when the
stripe-formation system is run as the second step in the cascade process. Figure 7 is an example of
how such a texture looks on a polyhedral model. The giraffe model is composed of five surfaces,
four for the legs and one for the body, instead of a single surface. Texture anomalies show up where
the polygons of the legs intersect those of the body.

Regular Stripe Patterns

The chemical system that produces random stripes like those in Figure 6a can also be used to produce
more regular stripe patterns. The random stripes are a result of the slight random perturbations in the
"substrate" for the chemical system. If these random perturbations are removed so the system starts
with a completely homogeneous substrate, then no stripes will form anywhere. Regular stripes will
form on a mesh that is homogeneous everywhere except at a few "stripe initiator" cells, and the stripes
will radiate from these special cells. One way to create an initiator cell is to slightly raise or lower the

substrate value at that cell. Another way is to mark the cell as frozen and set the value of one of the
chemicals to be higher or lower than at other cells. The pseudo-zebra in Figure 8 was created in this
manner. Its stripes were initiated by choosing several cells on the head and one cell on each of the
hooves, marking these cells as frozen and setting the initial value of chemical g , at these cells to be
slightly higher than at other cells.

Varying Parameters Across a Surface

On many animals the size of the spots or stripes varies across the coat. For example, the stripes on a
zebra are more broad on the hind quarters than the stripes on the neck and legs. Bard has suggested
that, after the striped pattern is set, the rate of tissue growth may vary at different locations on the
embryo [Bard 77]. This effect can be approximated by varying the diffusion rates of the chemicals
across the computation mesh. The pseudo-zebra of Figure 8 has wider stripes near the hind quarters
than elsewhere on the model. This was accomplished by allowing the chemicals to diffuse more
rapidly at the places where wider stripes were desired.
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Part Two: Mesh Generation and Rendering

This section describes how to generate a mesh over a polyhedral model that can be used for texture
synthesis and that will lend itself to high-quality image generation. The strength of this technique is
that no explicit mapping from texture space to an object's surface is required. There is no texture
distortion. There is no need for a user to manually assign texture coordinates to the vertices of
polygons. Portions of this section will describe how such a mesh can be used to simulate a reaction-
diffusion system for an arbitrary polyhedral model. This mesh will serve as a replacement to the
regular square grids used to generate Figures 3 and 6. We will create textures by simulating a
reaction-diffusion system directly on the mesh. It is likely that these meshes can also be used for other
forms of texture synthesis. Such a mesh can be used for texture generation wherever a texture creation
method only requires the passing of information between neighboring texture elements (mesh cells).

There are a wide variety of sources for polyhedral models in computer graphics. Models generated by
special-effects houses are often digitized by hand from a scale model. Models taken from CAD might
be created by conversion from constructive solid geometry to a polygonal boundary representation.
Some models are generated procedurally, such as fractals used to create mountain ranges and trees.
Often these methods will give us few guarantees about the shapes of the polygons, the density of
vertices across the surface or the range of sizes of the polygons. Sometimes such models will contain

very skinny polygons or vertices where dozens of polygons meet. For these reasons it is unwise to
use the original polygons as the mesh to be used for creating textures. Instead, a new mesh needs to
be generated that closely matches the original model but that has properties that make it suitable for
texture synthesis. This mesh-generation method must be robust in order to handle the wide variety of
polyhedral models used in computer graphics.

Mesh generation is a common problem in finite-element analysis, and a wide variety of methods have
been proposed to create meshes [Ho-Le 88]. Automatic mesh generation is a difficult problem in
general, but the requirements of texture synthesis will serve to simplify the problem. We only require
that the model be divided up into relatively evenly-spaced regions. The mesh-generation technique
described below divides a polyhedral surface into cells that abut one another and fully tile the

polyhedral model. The actual description of a cell consists of a position in R3 , a list of adjacent cells
and a list of scalar values that tell how much diffusion occurs between this cell and each of its
neighbors. No explicit geometric representation of the boundaries of these cells is necessary. Given a
value for cell density, the mesh-generation method first randomly distributes the appropriate number of

points on the surface of the polyhedral model. A relaxation procedure then moves these points across
the surface until they are fairly evenly spaced from one another. At this stage, each point gives an
(x.y,z) position that is a part of the description of a single cell. The region surrounding each point is
examined to determine which pairs of cells will diffuse to one another, and the result of this step gives
the adjacency information and the diffusion coefficients that complete the cell's description. The only
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user-supplied parameter for this mesh-generation method is the desired density of cells in the mesh.

Relaxation of Random Points

The first step in mesh generation is to distribute n points randomly on the model's surface. In order
to distributc points randomly over a polyhedral model, care must be taken so that the probability of
having a point deposited at any one location is the same everywhere on the surface. To place a random
point on the model we need to make an area-weighted choice of the polygon on which a point should
be placed. This can be accomplished using a binary search through a list of partial sums of the
polygon areas in the model. Now a random point on this polygon can be chosen [Glassner 90, p. 24].

Once the proper number of points has been randomly placed across the surface, we need to move the
points around until they are somewhat regularly spaced. This is accomplished using relaxation.
Intuitively, the method has each point push around other points on the surface by repelling neighboring
points. The method requires choosing a repulsive force and a repulsive radius for the points. We use
a repulsive force that falls off linearly with distance. Two points that are greater than the repulsive
radius r from one another do not affect each other. The relaxation method also requires a method for
moving a point that is being pushed across the surface, especially if the point is pushed off its original
polygon. Here is an outline of the relaxation process:

loop k times
for each point P on surface

determine nearby points to P
map these nearby points onto the plane containing the polygon of P
compute and store the repulsive forces that the mapped points exert on P

for each point P on surface
compute the new position of P based on the repulsive forces

Each iteration moves the points into a more even distribution across the polyhedron. Figure 4b shows
an initially random distribution of 1000 points over a polyhedral model, and Figure 4c gives the
positions of the same points with k = 40 iterations of the relaxation procedure. The underlying
polygons of the model are shown in Figure 4a.

The repulsive radius of the points should be chosen based on the average density of the points across
the whole surface. The meshes used in this paper were created using a radius of repulsion given by:

r = 2 Vn-a

n = number of points on surface
a = area of surface
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The above value for r gives a fixed average number of neighboring points to any point, independent

of the number of points on the surface and independent of surface geometry. This is important

because uniform spatial subdivision can then be used to find neighboring points quickly.

To compute how nearby points repel a given point P on polygon A, these other points are mapped

onto the plane containing polygon A. Points that already lie on polygon A remain where they are.

Points on polygons that share an edge with A are rotated about the common edge until they lie within

the given plane. Points on more remote polygons are first rotated about the nearest edge of A and

then projected onto the plane (see Figure 2).

p MapToPlane(Q, A) P MapToPlane(Q, A)
T ~~ -. - -, , - -- - -V V"

polygon A polygon A '., project

polygon B rotate 
.

polygon B rotate

Figure 2: Moving a point Q onto the plane of polygon A when it is on an adjacent

polygon (left) or when it is on a remote polygon (right).

How to make the points repel one another becomes straightforward now that we can map nearby

points onto a given point's plane. For each point P on the surface we need to determine a vector S

that is the sum of all repelling forces from nearby points. The new position for the point P on

polygon A will be P = P + kS, where k is some small scaling value. In many cases the new point
P' will lie on A. If P' is not on A, it will often not even lie on the surface of the polyhedron. In

this case, we determine which edge of A that P' was "pushed" across and also find which polygon

(call it B) that shares this edge with A. The point P' can be rotated about the common edge between
A and B so that it lies in the plane of B. This new point may not lie on the polygon B, but we can

repeat the procedure to move the point onto the plane of a polygon adjacent to B. Each step of this

process brings the point nearer to lying on a polygon and eventually this process will terminate. Most

polygons of a model should have another polygon sharing each edge, but some polygons may have no

neighbor across one or more edges. If a point is "pushed" across such an edge, the point should be

moved back onto the nearest -osition still on the polygon.

Mesh Cells from Voronoi Regions

The positions of these points become the locations of the mesh cells once relaxation has evened out the

distribution of points on the surface. Now regions need to be formed around each point to determine
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adjacency of cells and to give the diffusion coefficients between adjacent cells. In keeping with many
finite-element mesh-generation techniques, we choose to use the Voronoi regions of the points to form
the regions surrounding the points. A description of Voronoi regions can be found in a book on
computational geometry, e.g., [Melhom 84]. Given a set of points S in a plane, the Voronoi region
of a particular point P is that region on the plane where P is the closest point of all points in S. For
points on a plane, the Voronoi regions will always be bounded by line segments positioned halfway
between pairs of points. When we simulate a diffusing system on such a set of cells, we will use the
lengths of the edges separating pairs of cells to determine how much of a given chemical can move

between the two cells. Figure 4d shows the Voronoi regions for the set of points shown in Figure 4c.

Finding the exact Voronoi regions of the points on a polyhedral surface is not simple since one of these
regions might be parts of several different polygons. Instead of solving this exactly, a planar variation
of the exact Voronoi region for a point is used to determine the lengths of edges between cells. Using
the same procedure as before, all points near a given point P are mapped onto the plane of the polygon
A containing P. Then the planar Voronoi region of P is constructed and the lengths of the line
segments that form the region are calculated. It is the lengths of these segments that are used as the
diffusion coefficients between pairs of cells. In general, computing the Voronoi regions for n points
in a plane has a computational complexity of O(n log n) [Melhorn 84]. However, the relaxation
process distributes points evenly over the surface of the object so that all points that contribute to the
Voronoi region of a point can be found by looking only at those points within a small fixed distance
from that point. In practice we have found that we need only consider those points within 2r of a
given point to construct a Voronoi region, where r is the radius of repulsion used in the relaxation
process. Because uniform spatial subdivision can be used to find these points in a constant amount of
time, constructing the Voronoi regions is of O(n) complexity in this case.

Reaction-Diffusion on a Mesh

We can create any of the reaction-diffusion patterns described earlier on the surface of any polyhedral

model by simulating the appropriate chemical system directly on a mesh for the model. The square
cells of a regular grid are now replaced by the Voronoi regions that comprise the cells of the mesh.
Simulation proceeds exactly as before except that calculation of the Laplacian terms now takes into
account that the segments that form the boundaries of the cells are not all the same length. These

boundary lengths are the diffusion coefficients, and the collection of coefficients at each cell should be

normalized so they sum to one. V2a is computed at a particular cell by multiplying each diffusion
coefficient of the cell by the value of a at the corresponding neighboring cell, summing these values

for all neighboring cells, and subtracting the value of a at the given cell. This value should then be
multiplied by four to match the feature sizes generated on the regular square grid. When the simulation
is complete, we have a concentration for each participating chemical at each cell in the mesh. The next
section tells how these concentrations are rendered as textures.
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Rendering

Once the simulation on a mesh is finished, we require a method for displaying the resulting chemical
concentrations as a texture. First, we need a smooth way of interpolating the chemical concentrations
across the surface. The chemical value can then be used as input to a function that maps chemical
concentration to color. We have chosen to let the chemical concentration at a location be a weighted
sum of the concentrations at mesh points that fall within a given radius of the location. If the chemical
concentration at a nearby mesh cell Q is v(Q), the value of an arbitrary point P on the surface is:

Xv(Q) w( I P - Q I/ s)
v(P) 2 near P

Iw(IP-Q/s)
Q near P

The weighting function w can be any function that monotonically decreases in the range zero to one.
The function used for the images in this paper is:

w (d) = 2d 3 - 3d 2 + 1 if0 d < 1
w(d)=0 if d>l

This function falls smoothly from the value 1 down to 0 in the range [0,1], and its first derivative is
zero at 0 and at 1 (Perlin and Hoffert 89]. Any similar function that falls off smoothly could be used
for the weighting function. The images in this paper have been made using a value of s = 2r, where
r is the repulsive radius from the relaxation method. Much smaller values for s make the individual
mesh points noticeable, and values much larger than this will blur together the values of more nearby
mesh points. Uniform spatial subdivision makes finding nearby mesh points a fast operation because
only those mesh points within a distance s contribute to a point's value. Figure 4e shows the
individual cell values from a pattern generated by reaction-diffusion, where the chemical concentrations
have been mapped to a color gradation from blue to white. Figure 4f shows the surface colors given
by the weighted average for v(P) described above.

The method described above gives smooth changes of chemical concentration across the surface of the
model, and rendered images do not show evidence of the underlying mesh used to create the texture.
Aliasing of the texture can occur, however, when a textured object is scaled down small enough that
the texture features, say stripes, are about the same width as the pixels of the image. Super-sampling
of the texture is one possible way to lessen this problem, but computing the texture value many times
to find the color at one pixel is costly. A better approach [Williams 83] is to extend the notion of levels
of increasingly blurred textures to those textures defined by the simulation mesh.
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The blurred versions of the texture are generated using the simulation mesh, and each mesh point has

associated with it an RGB (red, green, blue) color triple for each blur level. Level 0 is an unblurred
version of the texture and is created by evaluating the concentration-to-color function at the mesh

points for each concentration value and storing the color as an RGB triple at each mesh point. Blur
levels 1 and higher are created by allowing these initial color values to diffuse across the surface.
When the values of a two-dimensional gray-scale image are allowed to diffuse across the image, the

result is the same as convolving the original image with a Gaussian filter. Larger amounts of blurring
(wider Gaussian filters) are obtained by diffusing for longer periods of time. Similarly, allowing the
RGB values at the mesh points to diffuse across the mesh results in increasingly blurred versions of
the texture given on the mesh. The relationship between diffusion for a time t and convolution with a

Gaussian kernel of standard deviation ( is t = y2 / 2 [Koenderink 84]. The blur levels of Figure 5

were generated so that each level's Gaussian kernel has a standard deviation twice that of the preceding

blur level.

The texture color at a point is given by a weighted average between the colors from two blur levels.
The choice of blur levels and ihe weighting between the levels at a pixel is derived from an
approximation to the amount of textured surface that is covered by the pixel. This estimate of surface
area can be computed from the distance to the surface and the angle the surface normal makes with the
direction to the eye. The natural unit of length for this area is r, the repulsion radius for mesh
building. The proper blur level at a pixel is log2 (sqrt (a)), where a is the area of the surface covered

by the pixel in square units of r. We have produced short animated sequences using this anti-aliasing
technique and they show no aliasing of the textures.

Bump mapping is a technique used to make a surface appear rough or wrinkled without explicitly
altering the surface geometry [Blinn 78]. The rough appearance is created from a gray-scale texture by

adding a perturbation vector to the surface normal and then evaluating the lighting model based on this

new surface normal. Perlin showed that the gradient of a scalar-valued function in R3 can be used as a
perturbation vector to produce convincing surface roughness [Perlin 85]. We can use the gradient of
the values v(P) of a reaction-diffusion simulation to give a perturbation vector at a point P:

d=r/ 100
gx = (v(P) - v(P + [d,0,01) / d
gy = (v(P) - v(P + [0,d,0]) / d

gz = (v(P) - v(P + [0,0,d]) / d

perturbation vector = [k * gx, k * gy, k * gz]

The above method for computing the gradient of v evaluates the function at P and at three nearby
points in each of the x, y and z directions. The value d is taken to be a small fraction of the
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repulsive radius r to make sure we stay.close enough to P that we get an accurate estimate for the
gradient. The gradient of v can also be computed directly from vs definition by calculating exactly
the partial derivatives in x, y and z. The scalar parameter k is used to scale the bump features, and
changing k's sign causes bumps to become indentations and vice versa. Figure 10 shows bumps
created in this manner based the results of a reaction-diffusion system.

Implementation and Performance

Creating a texture using reaction-diffusion for a given model can be a CPU-intensive task. Each of the
textures in Figures 7 through 10 took several hours to generate on a DEC 3100 workstation. These
meshes contained 64,000 points. Perhaps there is some consolation in the thought that nature requires
the same order of magnitude in time to lay down such a pattern in an embryo. Such texture synthesis
times would seem to prohibit much experimenting with reaction-diffusion textures. It is fortunate that
a given reaction-diffusion system with a particular set of parameters produces the same texture features
on small square grids as the features from a simulation on much larger meshes. The patterns in this
paper were first simulated on a 64 x 64 grid of cells where the simulations required less than a minute
to finish. These simulations were run on a Maspar MP-I, which is a SIMD computer with 4096
processing elements connected in a two-dimensional grid. A workstation such as a DEC 3100 can
perform similar simulations on a 32 x 32 grid in about two minutes, which is fast enough to explore
new textures. Once a texture is generated by reaction-diffusion, the time to render the model with a
texture is reasonably fast. The image of the horse in Figure 9 required 70 seconds to render at 512 x
512 resolution without anti-aliasing on a DEC 3100. The same horse without texture takes 16 seconds
to render.

Future Work

The cascade processes that formed the textures in this paper are just a few of the patterns that can be
generated by reaction-diffusion. More exploration should be made on how one chemical system can
leave a pattern for later systems. For example, one chemical system could affect the random substrate
of a second system. What patterns can be formed if one system causes different rates of diffusion in

different locations in a second system? Another fruitful subject is examining what patterns can be
formed as a result of anisotropic diffusion of chemicals.

Other methods of pattern creation could be performed on the meshes used for texture synthesis.
Examples that might be adapted from cellular automata [Toffoli and Margolus 87] include two-
dimensional annealing, diffusion-limited aggregation and the Belousov-Zhabotinskii reaction.
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n =400 n=10

n =800 n = 2000

Figure 1: One-dimensional example of reaction-diffusion. Chemical
concentration is shown in intervals of 400 time steps.
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Figure 6a: Random Stripes Figure 6b: Multiple-Width Stripes

Figure 7: Giraffe Figure 8: Pseudo-Zebra
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Figure 9: Leopard-Horse Figure 10: Bump Maipping


